
Hiding the Disk and Network Latency of Out-of-Core Visualization

David Ellsworth*

AMTI / NASA Ames Research Center

Abstract

This paper describes an algorithm that improves the performance of

application-controlled demand paging for out-of-core visualization

by hiding the latency of reading data from both local disks or disks

on remote servers. The performance improvements come from bet-

ter overlapping the computation with the page reading process, and

by performing multiple page reads in parallel. The paper includes

measurements that show that the new multithreaded paging algo-

rithm decreases the time needed to compute visualizations by one

third when using one processor and reading data from local disk.

The time needed when using one processor and reading data from

remote disk decreased by two thirds. Visualization runs using data

from remote disk actually ran faster than ones using data from local
disk because the remote runs were able to make use of the remote

server's high performance disk array.

1 Introduction

Simulations run on large parallel systems produce large data sets

having hundreds of megabytes to terabytes of data. These data sets

cannot usually be visualized on the system that produced them be-
cause it is reserved for simulation runs. Instead, the visualization is

typically performed on workstations. The workstations usually do

not have sufficient memory to load the entire data set, which means

that out-of-core visualization techniques must be used. These tech-

niques calculate the visualization with only a fraction of the data

set resident in memory, in addition, many data sets are so large that

they only fit on central file servers. Since most file servers do not

have significant extra CPU and memory capacity, remote out-of-

core visualization is required.

One method for performing out-of-core visualization is

application-controlled demand paging Ill. This is similar to the de-

mand paging used in virtual memory systems, but it is built into the

application instead of the operating system. Demand paging takes

advantage of the fact that most visualization calculations only touch

a small fraction of the data set. The main advantage of application-

controlled paging over operating system demand paging is that it

allows each page of data to hold a 3D cube of data, which exper-

iments have shown to reduce the amount of data required to com-

pute a visualization by about half [1]. Another advantage is that it

reduces the swap and address space required for the application.

However, the original implementation of out-of-core visualiza-

tion using demand paging did not try to perform computation and

disk access at the same time. While the operating system's disk

caching and read ahead did overlap disk access and computation,

the amount of overlap was small. In addition, the original imple-

mentation only had one disk request outstanding at a time. This

meant that the operating system could not optimize use of the disk

by reordering the requests to reduce seek time, or by issuing concur-

rent requests to different drives in RAID disk subsystems. Finally,

overlapping computation and disk access is even more important

*NASA Ames Research Center, Mail Stop T27A-2. Moffett Field, CA
94035 (ellswort @nas.nasa.gov)

when the disk is accessed across the network since the network adds

latency.

This paper increases the amount of overlap of computation and

disk accesses by dividing the visualization into a number of tasks,

and then running the tasks using a pool of worker threads. A sched-

uler initially runs one thread per processor. When a thread needs to
read data from disk, it is blocked, and the scheduler allows another

thread to run. The blocked thread is restarted after the data has been

read and a processor becomes available. A separate pool of reader

threads request data pages from the operating system and wait for

the requests to complete. If the data set is on local disk, the reader

threads run as part of the application; if the data set is on a remote
server, the threads run on that server.

This new multithreaded demand paging algorithm has several

advantages other than its increased performance. First, while a vi-

sualization algorithm must be modified to take advantage of the

overlapped disk access and computation, the modification is useful

in itself: the algorithm must be parallelized. The number of tasks

generated may need to be higher than with in-core visualizations,

but number of tasks is usually easy to change since the number

should be varied with the number of processors. A second advan-

tage of the new algorithm is that it is not tied to a particular visual-

ization algorithm; instead, it can be used to accelerate a number of

algorithms.

The new algorithm's last advantage is that it is compatible with

time-critical visualization [2], which is where the time to compute
a visualization is limited to guarantee a specified frame rate. With

time-critical visualization, each visualization object stops its com-

putation after its time budget has been exceeded. To do this, each

object must have a fairly accurate estimate of the CPU time used.

Some operating systems, such as Unix, record the amount of CPU

time that a thread uses, but the granularity of the CPU time is too

coarse for interactive visualization applications. Instead, because

the algorithm only schedules one thread per processor, and because

most systems have a high-resolution real time clock, the amount

of elapsed wall-clock time should be an acceptable estimate of the

elapsed CPU time. We hope to extend our implementation to sup-

port time-critical visualization in the future.

2 Related Work

In addition to demand paging algorithms, out-of-core visualization

algorithms include streaming algorithms and indexing algorithms,

Streaming algorithms read the entire data set, but read it in small

pieces that will fit into memory. Once one piece has been brought

into memory, the computation is run over that portion of the data.

Further pieces are read and processed until the visualization has

been computed for the entire data set. Law et al. [3] describes a

general streaming architecture. The UFAT batch visualization pro-

gram [4] also performs streaming on time varying data sets. When

the visualization only accesses a small fraction of the data set, a

streaming algorithm can be slower than a demand paging algorithm

if the streaming algorithm does not avoid reading all of the data.

The second type of out-of-core visualization algorithms is index-

ing algorithms. Many indexing algorithms have been described for

isosurface computation [5, 6, 7]. These algorithms precompute an

indexthatidentifiestheportionofthedatathatisnecessarytocom-
putetherequestedvisualization.Forisosurfacecomputation,the
indexidentifieswhichcellscontainportionsoftheisosurface.One
disadvantageofmanyindexalgorithmsisthattheirindexisspecific
tothevisualizationalgorithm.

Somenon-visualizationalgorithmshavesimilaritiestothiswork.
Flightsimulation[8]andwalkthroughalgorithms[9]storetheirge-
ometryondisk,andonlykeepthegeometrywhichisinsidethe
viewingfrustumresidentinmemory.Thesealgorithmscanhide
thedisklatencybyprefetchingthegeometrythatwillsoonmove
insidetheviewingfrustum.Theprefetchingispossiblebecausethe
viewer'sexpectedpositioncanbecomputedbyextrapolatingthe
user'spositionusinghisorherlastviewpositions.Prefetchingis
harderwithvisualizationcomputationsbecauseit isoftenimpossi-
bletopredicthowthealgorithmwilltraversethedataset.

3 Application-Controlled Demand Paging

The basic idea of demand paging for visualization starts with log-

ically breaking the data set into fixed size pages. When a file is

opened, only enough header information is read to set up data struc-

tures for tracking the pages that have been loaded into memory.

During execution, when a data value is needed, the page number is

computed. If the page is in memory, the requested value is returned.

Otherwise, memory is allocated for the page, the page is read, and

the requested value returned. Because the implementation uses a

fixed-size memory pool for page storage, allocating a page when

the pool is full involves reallocating, or stealing, the memory used

by another page.

The technique used for dividing the data set into page impacts

the performance. This paper's implementation uses a cubed page

format for paging structured grid files (unstructured grids are not

supported). The original 3D arrays of data are broken into a series

of pages, each page containing an 8xgx8 cube, or 2 KB, of the

original data. Using a cube of data instead of the original array

order reduces the numbers of page that must be read because, if

the original data was simply broken into page without changing the

layout, each page would contain a plane or slab of data. For most

directions of traversal, a larger fraction of the data in a page is used

when traversing a cube of data instead of a plane of data. The page

size should be the best compromise between having large pages,

which decreases the cost of reading each byte, and smaller pages,
which retrieve a smaller amount of unnecessary data. The 8xgxg

page size had the best performance in experiments described in the

earlier demand paging paper [1].

The cubed page format requires that files be converted to a new

file format before the visualization process. For the three data sets

used as examples in Section 6, their converted files would require an

additional 19 to 30% of storage if partially-filled pages were padded

to the full page size when written to disk. Because 19% of a large

file is still large, partially filled pages are not padded on disk. These

pages are expanded to full size when they are loaded into memory

to allow the run-time data access code to be simpler and faster.

When a new page must be read when the memory pool is full,

an existing memory block must be stolen. The paging module al-

locates a block that has not been used recently by associating a
referenced bit with every page in memory. The referenced bit is

set when a page is referenced. When a page must be stolen, the

in-memory pages are scanned, looking for one with a cleared refer-

enced bit. The referenced bit of a page is cleared as it is examined

during the scanning, which means that a page is reallocated if it has

not been accessed after two scanning passes have completed. This

algorithm is similar to ones used for virtual memory page replace-

ment in operating systems [10].

3.1 Field Encapsulation Library

The paging system is part of the Field Encapsulation Library [11].

This library encapsulates the management of field data for different

grids, such as regular, structured curvilinear, multiblock, and un-

structured grids. It provides a grid-independent interface by plac-

ing all the grids types in a C++ class hierarchy and using polymor-

phism to direct requests to the correct functions at run time. Be-

cause paged grids and fields are also defined in this class hierarchy,

visualization algorithms do not need to be modified to use paged
files.

FEL retrieves data from the paging system either vertex at a time

or a 2x2x2 group of vertices at a time. Each request can be for all or

part of the data (coordinates, solution data) stored at the vertex or

cell vertices. Being able to retrieve multiple values with one func-

tion call reduces the cost of translating the i,j, k lattice coordinates

to page number and offset. One consequence of this interface is

that a single retrieval request can cause a number of pages to be

read if multiple values are requested or a 2x2x2 request falls on a

page boundary.

4 Multi-Threaded Demand Paging

The multi-threaded demand paging algorithm halts a computation

when it requires a page that is not resident and attempts to run an-

other computation while the page is being read. This is done by

using a simple, high-level multitasking library called the Abstract

Multitasking Library (AML).

An application uses AMI, to compute a visualization by creating

a number of tasks. Typically, each task represents a complete or

partial visualization object, such as a single streamline or a single

grid surface. Each task is a C++ object that holds enough informa-

tion to identify the work to be done, and has a method that is called

to do the computation. For example, the task object might hold

pointers to a streamline's seed point and the velocity field within

which the point will be integrated, and define a function that calls

an existing streamline integration function.

Once the application creates the tasks, it places them in an AML

task group, which is a simple list of tasks. Then, the application

uses AML to initialize a pool of worker threads, and tells AML to

use the pool to compute the visualizations in the task group. At

the start of the computation, AML first assigns a task from the task
groups to each thread, and starts the threads running. One thread

is started for each processor that will be used. Each thread then

works independently on its assigned task until it finishes the task or

finds that the it needs a page of data that is not memory resident. If

a thread finishes the task, it uses AML to find another task in the

task group to compute. If a thread needs a page of data, it requests

that the page be read by a reader thread; this process is described

below. After placing the read request in the queue, the thread sees

if another thread is waiting to get use of a processor. If so, the first

thread wakes up the other thread before going to sleep. If there

is no waiting thread, the first thread will check to see if there are

remaining tasks in the task group as well as an idle thread in the

thread pool. If so, the first thread wakes up the idle thread before

going to sleep. The idle thread then starts work on the next task in

the task group.

The algorithm just described is a thread scheduler; it is similar

to the ones built into operating systems. The scheduler attempts

to keep one thread running on each processor by only having one

thread per processor in a runnable state; that is, one thread that

is not blocked. This means that a thread is not always immedi-

ately restarted after a page is read for it. The thread is immediately

restarted if the scheduler sees that there are fewer running threads

than processors. However, if every processor has a thread to run,

thenow-ready-to-runthreadisplacedinaqueuetowaituntilapro-
cessorbecomesavailable.

Theschedulerdoesnotuseanyspecialoperatingsystemfunc-
tionstomanageitspoolofworkerthreads.Instead,itusesstandard
interprocesscommunicationmechanismssuchasconditionvari-
ables,ifa threadistobeblocked,it waitsonaconditionvariable,
whichcausesittostopexecution.Theschedulingmechanismdoes
assumethat,if onlyonethreadperprocessorisnotblocked,the
operatingsystemissmartenoughtoruneachofthethreadsona
separateprocessor.Ourexperience is that this works reasonably

well on lrix systems if the sproc threading library is used. The

pthreads multitasking library gives lower performance. A possible

explanation for the low performance is that, if the pthreads package

does its own thread scheduling outside the kernel (as is typical), the
pthreads scheduler interacts unfavorably with the AML scheduler.

4.1 Parallelizing Demand Paging

The parallel paging algorithm has a few differences from the se-

rial paging algorithm described above. The changes fall in three

categories:

Page access. Each access to a page to retrieve data must be

done atomically. Otherwise, one thread could verify that a page was

present, a second thread could steal that page's storage and read a

new page into it, and then the first thread could retrieve the new

page's data by mistake. The problem is eliminated by serializing

access to the page with a mutual exclusion lock. However, allocat-

ing one lock per page in the file is impractical since there may be

tens of millions of pages mapped at once. Instead, the implementa-

tion uses one lock for a group of 48 to 80 pages, depending on the

type of file.

Reading a page. When a thread finds that a page is not present,

instead of finding memory for the page and reading the page from

disk, it instead finds the memory and puts a request into a queue

for the page to be read. If the thread needs more than one page, it

allocates memory and puts a request into the read queue for each

page. Then, the thread waits on a condition variable for the reads to

be completed.

A separate pool of reader threads takes requests from the read

queue, reads the page, and unpacks the page if necessary. When a
reader thread finishes a read, it checks whether all of the worker's

requests have been completed. If so, the worker thread is restarted if

the scheduler indicates that a processor is available, and the thread

is marked as "ready to run" otherwise.

Corner cases. The page allocation code needs to be modified to

insure that only one thread allocates a page at a time using a lock for

scanning the page table, and also the per-page locks. Also, the page

reading code must handle having more than one worker request the

page at the same time. This is handled by keeping a list of pages

that are being read, and checking the list before adding a request to

the read queue.

4.2 Remote Demand Paging

Remote demand paging could be performed using a distributed file

system, such as the Network File System (NFS). However, they do

not provide the same performance that a specialized paging server,

as shown below. One reason for the lower performance of NFS is

that it only sends blocks that are aligned on regular block bound-

aries. Because paged files have arbitrarily sized pages, the protocol

will return more data than are necessary. In addition, some NFS

implementations may require more context switches and copying

of data compared to what can be achieved with a specialized client
and server.

The remote paging server is a simple application that communi-

cates with the local paging library using a TCP socket. The server

supports three primary operations: Open, which opens a file and

returns a file handle; Read, which reads and returns data given a file

handle, an offset, and size; and Close, which closes the file specified

by a file handle. The server does not support writing.

When a worker thread discovers that a page from a remote paged

file is not memory resident, it puts the request in the read queue, and

also sends a read request to the remote server. The remote server

application has a pool of reader threads that constantly take incom-

ing read requests from the socket, perform the reads, and return the
requested data via the socket. The reader threads serialize read-

ing and writing to and from the socket using a pair of semaphores.

A single local reader thread waits for results coming from the re-

mote server, and matches the returned data to a request in its read

queue. Then, the thread reads the data from the socket and unpacks

the page if necessary. The final step is to wake up the requesting

worker thread if a processor is available. Because the responses can
come back in any order, each request and response has a sequence

number identifying it.

To allow reasonable performance, the TCP socket must have the

TCP_NODELAY option enabled. If the option is not enabled, the

performance on lrix systems is much lower. This happens because

the TCP protocol code will hold on to a read request message for
a while due to a desire to combine multiple small messages into a

single large one.

5 Implementation

The local and remote demand paging algorithms just described

have been implemented a batch visualization program called

bat:cb.vis. This program uses FEL and the VisTech [12] visu-

alization library. This program allows the user to compute a set

of visualizations for each time step in the visualization. Currently,

the program supports particle tracing (streamlines, streaklines, and

pathlines) as well as the extraction of surfaces of the grid. Addi-

tional visualization methods will be supported in the future. The

visualizations can be optionally colored by using one of several
standard functions.

A non-threaded version of FEL and bat:clavS.s can be created

using compile time flags that replace the threaded portions of the
code with the older, non-threaded versions. The serial version of

the remote paging code is similar to the parallel version, but only al-

lows synchronous requests to the server. The experiments described

below give timings with this version to show the improvements due

to the new algorithms. The threaded version of bat:clavS.s uses

SGI sproc-style threads instead of the pthreads package because

the former gives better performance.

6 Experimental Methodology

We evaluated the multi-threaded demand paging algorithm's perfor-

mance by measuring the time required to compute a visualization

for several different configurations. The performance was measured
for different data sets, different locations of the data (local or re-

mote), and for different algorithm parameters.

The experiments were run under the following conditions. The

runs were made on the three systems described in Table 1; all ran

the Itix 6.5 operating system. We used two remote servers due

to disk space limitations. The systems were connected by an 800

Mbit/second HIPPI TCP network. While HIPPI networks are fairly

exotic, the performance should be similar on the more common Gi-

gabit Ethernet since the remote protocol does not use HIPPI's large

packet capability. All of the runs set the size of the memory pool

used to hold data pages to 200 MB.

The remote server's large memory and processor configurations

were largely unused during the runs since very little processing was

System
HowUsed Type
Computation,Onyx
localstorage
RemoteSSLV, Onyx2
F18storage
RemoteHarrier Onyx
storage

Number
of Memory Data

Processors Size Storage

4 1 GB 4 striped
disks

3.5 GB RAID

Array
8 5 GB RAID

Array

Table 1: Systems used for experiments.

Number Grid Solution Total

Data of Time Size Size Size Percent

Set Steps (MB) (MB) (GB) Read

SSLV I 254.0 317.5 0.56 7.9

Fi8 150 26.9 33.6 4.96 1.7

Harrier 1600 54.9 68.6 107.4 7.7

Table 2: Data set statistics.

Local Remote Remote
Data Disk NFS Server

SSLV 30.3 38.1 46.6

FI8 146 164 163

Table 3: Non-threaded times, in seconds.

Number Number of

Data Worker Reader Threads

Access Threads 1 I 4 I 16

Remote 4 176 178 171
NFS 16 169 169 162

Remote 4 118 116 89.1

server 16 109 103 77.9

Table 4: Harrier timings, in minutes.

how the amount of computation and disk access concurrency affects

performance.

necessary, and because all of the machines had their operating sys-
tem's file cache flushed before each run. The cache was flushed

by running a program that allocated as much memory as possible,
which takes memory away from the file cache, and then reading a

different file in random order. In addition, five copies of the SSLV

and FIB data sets were placed on the remote server. Consecutive

runs rotated through the data set copies.

We used the three data sets shown in Figures 5 to 7 for the per-

formance timings. Table 2 contains statistics about the data sets.

The data sets are:

SSLV. This data set is of the Space Shuttle Launch Vehicle flying

at mach 1.25. This steady simulation was computed in order to have

a more accurate simulation of the shuttle aerodynamics compared
to earlier simulations, and enabled more accurate engineering anal-

yses. The visualization contains several streamlines showing the
airflow between the external tank, the solid rocket booster, and the

orbiter. The streamlines are colored by the local density value.

F18. This data set shows the FIB flying at a 30-degree angle of

attack. The simulation was performed to analyze the interaction of

the vortex formed over the leading-edge extension with the vertical

stabilizer. The visualization injects particles into the center of the

vortex, and colors them according to the local density value.
Harrier. The Harrier data set shows the Harrier flying slowly 30

feet above the ground. The simulation is part of research into the

cause of oscillations seen when the jet is flying at this level. The

visualization shows particles injected into the jet exhausts, which

shows the structure of the ground vortices created by the exhaust.

The particles were injected every third time step to reduce the com-

putation requirements, and are colored according to the local pres-
sure. Because the visualization takes over an hour to compute, only

a few performance runs for the Harrier are shown below.
Different sets of runs explored the following variables:

Data set access. Runs accessing a local copy of the data show

the performance of the local demand paging algorithm. Different

runs compared the performance of accessing remote data using the

custom paging protocol and the standard NFS protocol.

Number of processors. Some runs show the basic performance

of the algorithms, when they are run on a single processor. Other

runs used all four of the system's processors, which shows the

amount of speedup possible. It would be unreasonable to expect

linear speedups because the disk and network performance did not

change. The single processor runs used the lrix runort command

to restrict all threads to a single processor.
Number of reader and worker threads. Different runs show

7 Results

The results are shown in Tables 3 to 6. Each row in the SSLV and

FI8 tables shows values for a constant number of worker threads

per processor (WTPP). This means that the timings in the left half
of each row are for either 1, 4, or 8 worker threads, and the right

half times are for 4, 16, or 32 worker threads. All of the timings are

from single run. which means run-to-run variations are expected.

The F18 timings are also shown in chart form in Figures I to 4.

The curves for the SSLV timings are similar, and are omitted to

save space. Much of the discussion below refers to the best run

for a configuration; this happens to be the runs using the largest
number of threads tried: 16 reader threads and 8 worker threads per

processor.
Overall, the results show that, for both remote and local pag-

ing, the multithreaded paging approach is substantially faster than

the previous serial paging approach, even when the multithreaded

paging is run on a single processor. The visualization computation

times decrease by about 30% for local paging. For remote paging,

the times decrease by 50 to 66%---a two to three times speedup.

Using the multithreaded remote paging server to compute a visu-
alization was also substantially faster than using NFS: the custom

paging server took between 40 to 64% less time. The remainder of
this section examines the results in more detail.

Local data performance. Using the threading library decreased

the run time by about one third when the data are on local disk. The

best single-processor threaded time for the SSLV was 20.3 seconds,

while the serial implementation took 30.3 seconds. With the FI8,
the time decreased from 146 seconds for the serial version's run to

94.4 seconds for the best single-processor threaded run.

Using more processors did not speed up the fastest SSLV run: the

best single-processor time was 20.3 seconds, while the best four-

processor time was 19.8 seconds. The difference between the run
times is below the margin of error. The FI8 did run faster with four

processors: the best time decreased from 94.4 to 76 seconds. It is

not surprising to see no or a small speedup since the disk can be

the limiting factor. The decrease in time for the F I8 does show that
these multithreading techniques will make good use of multipro-

cessor systems if there is sufficient disk bandwidth.

Varying parameters with local data. Figures 1 and 2 show the

general trends when the number of worker and reader threads is
varied. Increasing the number of worker or reader threads usually

increases the performance if you allow for run-to-run variations.

Using eight instead of four worker threads per processor does not

¢d

b-,

150 -

I00-

50-

0

* No threading

_-- _----- 1 worker thread per processor

- -o- 4 worker threads per processor

...A.. 8 worker threads per processor

""""" 'I:.':..-: .-:.|

I I I I I

I 2 4 8 16

Number of reader threads

Figure 1:FI8 timings using data from local disk and one processor.

ca.

[]

100-

50

I I I I I

1 2 4 8 16

Number of reader threads

Figure 2:Fi8 timings using data from local disk and four proces-

sors.

result in a large speed increase. Adding more reader threads be-

yond the 16 threads tested should increase the performance, but 16

threads looks to be near the point of diminishing returns.

The main exception to the above trend is seen when a single pro-

cessor and a single worker thread are used: adding reader threads

does not increase performance. This is not surprising because the

pages that the single worker thread requests will usually be adja-

cent, which means that the disk caching done by the operating sys-

tem allows the one reader thread to give good performance.

Remote data versus local data. One surprising result with the
remote timings is that the fastest remote runs were faster than the

corresponding fastest local data runs. For example, the fastest lo-

cal timing for the F18 was 94.4 seconds, while the fastest remote

time is 76 seconds. This can be explained by the higher perfor-

mance disk subsystem on the remote server: it has a RAID array

with dozens of disk drives, while the local disk subsystem has only

four striped disks. This speedup will likely be seen in production

usage of threaded demand paging because central file servers usu-

ally have a better storage system than a personal workstation.

Remote access speedup. The remote single-processor multi-

threaded paging times were two to three times faster than the orig-
inal serial paging code. The best single-processor multithreaded

time for the SSLV was 15.8 seconds, which is nearly three times

faster than the 46.6 seconds needed for the serial paging version.

The corresponding F18 times are 82 and 163 seconds.

NFS performance with threading. The fastest runs that used

NFS with multiple reader threads were only somewhat faster than

the serial NFS times. The SSLV serial run took 46.6 seconds, which

decreased to 43.3 seconds with threading and a single processor,

X No threads, custom server

- -a I worker per processor, custom server

+ 4 workers per processor, custom server

8 workers per processor, custom server

+ No threads, NFS

1 worker per processor, NFS

---e-- 4 workers per processor, NFS

- - -A-- 8 workers per processor, NFS

150-

.--IOO.

e. 50-

0

I:: l::::::::l::::::::i:: I

I I I I I

1 2 4 8 16

Number of reader threads

Figure 3: FiB timings using data from remote disk and one proces-
sor.

ka

150 -

100 -

50-

-_ k._ -d ¸

d_....._. . _,

I I I I I

I 2 4 8 16

Number of reader threads

Figure 4:FI8 timings using data from remote disk and four proces-
sors.

and 41.4 seconds with four processors. The respective times for the

FI8, 164, 136.4, and 132 seconds, show a moderate performance

increase. Figures 3 and 4 show that adding additional reader threads

does not change the NFS performance appreciably, and that adding

worker threads only results in a small speed increase.

NFS versus remote server. Accessing remote data using the

demand paging server was much faster than using NFS. With the

SSLV data set, the fastest one-processor time was 43.3 seconds

when using NFS, and 15.8 seconds with the demand paging server,

a speedup of nearly three. The fastest one-processor remote server
F18 run took 82 seconds, 40% less time than the fastest one-

processor NFS run, which took 136 seconds. Finally, the fastest

Harrier run using the threaded server (77.9 minutes) took less than

half the time required when using NFS (162 minutes).

The performance increase was larger when using four processors

because the NFS four-processor runs took about the same time as

the single-processor runs. The fastest four-processor demand paged

server run with the FI8 was 60.7 seconds, while the corresponding

single-processor run was 82.2 seconds. This shows that accessing
data remote data with the threaded server scales better than access-

ing data with NFS.

Data' Num. l 1 Processor 4 Processors ,]

Access WTPP I I RT[2 RTI4 RTI8 RTI 16 RT I RT I 2 RTI4 RTI8 RT I 16RT]
Local 1 33.4 34.1 33.8 33.7 34.3 33.8 33.5 25.9 21.9 21.1

Disk 4 34.3 34.8 26.7 22.6 21.7 36.2 34.9 26.2 21.2 19.0

8 35.1 34.9 26.2 22.6 20.3 34.7 34.2 25.8 22.9 19.8

Remote I 46.6 47. i 48. I 48.4 48.5 40.9 45.5 45.3 44.4 43.5

via 4 44.6 45.5 45.9 44. i 43.3 45.8 47.4 44.6 43.8 42.3

NFS 8 45.0 40.7 44.5 42.9 42.6 43.9 45.2 44.4 43.2 41.4

Remote I 34.5 36.9 35.0 35.0 35.3 30.5 30.0 21.7 18.1 17.0

via 4 31.4 30.6 22.4 18.5 17.4 28.7 27.9 19.6 16.1 14.5

Server 8 30.3 30.1 21.7 17.7 15.8 29.4 25.2 18.6 15.7 14.0

Table 5: SSLV timings, in seconds. Key: WTPP = worker threads per processor, RT = number of reader threads.

Data Num. 1 Processor 4 Processors

Access WTPP 1 RT 2RT 4RT 8RT 16RT IRT 2RT 4RT 8RT 16RT
Local I

Disk 4

8

Remote 1

via 4

NFS 8

Remote 1

via 4

Server 8

165
138

133

179

152

147

150

!15

107

166 163 159 161 127

140 131 107 99.6 125

134 123 101 94.4 125

181 181 183 183 151

152 151 146 145 139

146 146 139 136 139

153 150 147 147 104

ll8 Ill 90.6 85.2 96.6

109 103 86.0 82.2 97.7

126
124

123

142

139

138

105

97.6

96.4

!19 93.2 87.8

113 86.8 75.4

113 86,4 76.0

141 138 137

138 135 133

138 135 132

96.3 75.7 72.5

87.2 67.4 61.1

87.2 67.0 60.7

Table 6:F18 timings, in seconds. Key: WTPP = worker threads per processor, RT = number of reader threads.

8 Summary and Future Work

This paper has described an approach that improves the perfor-

mance of application-controlled demand paging for out-of-core vi-

sualization by better overlapping the computation with the page
reading process. It does this by using a pool of worker threads

that perform the visualization computation, and a separate pool of
reader threads to perform the page reads. A scheduling module

manages the worker threads so that only one worker runs per pro-

cessor. Measurements show that the multithreaded paging algo-

rithm decreases the time needed to compute visualizations by one

third when using one processor and reading data from local disk.

The time needed when using one processor and reading data from

remote disk decreased by two thirds, in part due to the high per-

formance of the remote server's disks. By using the new remote

paging algorithm instead of using NFS for remote paging, the com-

putation time decreased time by 40 to 63%, depending on the data
set.

The performance increases described in this paper make out-of-
core visualization using local and remote demand paging more at-
tractive. In addition, the fact that remote demand paging can be

faster than local paging could, in some settings, even replace out-

of-core demand paging from local disk with paging from remote
disk.

One direction of future work would be run experiments with

larger worker and reader thread pools to determine whether there

is a point at which adding threads decreases the performance. A

second direction would be to implement an interactive time-critical

visualization system in order to gauge the effectiveness of the time-

critical support built into the new multithreaded paging algorithm.

A third direction would be to evaluate the performance of remote

demand paging over a wide area network instead of over a local
area network.

Acknowledgments

This work was supported by NASA contract DTTS59-99-D-

00437/A61812D I am grateful to Raynaldo Gomez and Fred Mar-

tin for providing the SSLV data; Ken Gee and Scott Murman for the

FI8 data; and Jasim Ahmad, Neal Chaderjian, Scott Murman, and

Shishir Pandya for the Harrier data. I would also like to thank Pat

Moran for his last-minute editing assistance, and Tim Sandstrom

for his help with the VisTech library.

References

[1] Michael B. Cox and David Ellsworth. Application-controlled

demand paging for out-of-core visualization. In Roni Yagel

and Hans Hagen, editors, IEEE Visualization '97, pages 235-
244. IEEE, October 1997.

[2] Stephen T. Bryson and Sandra Johan. Time management,

simultaneity and time-critical computation in interactive un-

steady visualization environments. In IEEE Visualization '96.
IEEE, October 1996. ISBN 0-89791-864-9.

[3] C. Charles Law, William J. Schroeder, Kenneth M. Martin,

and Joshua Temkin. A Multi-Threaded streaming pipeline

architecture for large structured data sets. in David Ebert,
Markus Gross, and Bernd Hamman, editors, IEEE Visualiza-

tion '99, pages 225-232. IEEE, October 1999.

[4] David Lane. UFAT: A particle tracer for time-dependent flow

fields. In IEEE Visualization '94, pages 225-232. IEEE, Oc-
tober 1994.

[5] Philip M. Sutton and Charles D. Hansen. Isosurface extraction

in time-varying fields using a temporal branch-on-need tree

(T-BON). IEEE Visualization '99, pages 147-154, October
1999.

Figure5:VisualizationoftheHarrierdataset.

[6] Yi-JenChiangandCl_iudioT Sil',a. I/O optimal is_surtace

extraction. In Roni Yagel and Hans Hagen, editors. IEEE Vi.

._uali:ation "97. pages 293-300. IEEE. No,,ember 1997.

[7] Yi-Jen Chiang. Clfiudio T. Silva, and William J. Schroeder. In-
teractive out-of-core isosurface extraction. IEEE Visualigation

'_J& pages 167-174. October 1998. {SBN 0-8186-9176-X.

181 B. J. Schachter. Computer image generation li)r flight simu-

lation, lEEK ('ompuler (;raphics and Applications. 1:20-68.
October lOS I.

[9] Thomas A. Funkhouser. Database management fl)r interacti;e

display of large architectural models. In Wayne A. Da_ is and

Richard Barrels, editors. (]raphic_ h_tcrfitce '96, pages I-8,
Canadian lnl_rmation Processing Societ,,. Canadian Human-

Computer Communicatmns Society. May 1996. ISBN O-
O6L]5338-5-3.

[10] Abraham Silberschatz and Peter Baer Gal_ m. Operating 5vs-

tom ('oncepts. John Wile,,' and Sons. 5th edition. 1998.

llll Patrick Moran. Chris Hen/e, and Da,,id EIIs,xorth. The FEL

2.2 user guide. Technical Report NAS-O0-002. NAS Systems

Di', ision, N:\SA Ames Research Center. January 2000.

[121 Han-Wei Shen. Tim Sandstrom. David Kenv,'right, and Ling-

Jen Chiang. VisTech Library User and Programmer Guide.

National Aeronautics and Space Administration, 1999.

Figure 6: Visualization ol the SSLV data set,

Figure 7: Visualization of the FIB data set.

